Link to the University of Pittsburgh Homepage
Link to the University Library System Homepage Link to the Contact Us Form

Post-Newtonian gravitational dynamics from effective field theory

Pardo, Brian (2023) Post-Newtonian gravitational dynamics from effective field theory. Doctoral Dissertation, University of Pittsburgh. (Unpublished)

[img]
Preview
PDF
Primary Text

Download (833kB) | Preview

Abstract

Gravitational wave astronomy is rapidly maturing as a standard tool to study astrophysics, astronomy, and cosmology. However, to fully realize the promise of gravitational waves, accurate wave templates computed either numerically or using analytical approximations are essential, as exact solutions to the highly nonlinear Einstein field equations from which templates are derived are intractable for realistic systems.

In this thesis, we present progress made in computing observables from an effective field theory framework of gravity applicable to the early stages of binary mergers. We first tackle next-to-leading order spin dependent contributions to the equations of motion in the post-Newtonian expansion, and use these results to derive adiabatically conserved quantities and radiative flux-balance equations, including for energy and angular momentum. We then compute the accumulated phase for quasicircular, spin-aligned orbits, an important gravitational wave observable, including subleading spin-orbit and spin-spin effects. We also derive the linear momentum and center-of-mass frame corrections, and compute the kick velocity for spin-aligned systems. Using these results, we present a mapping to corresponding results computed with more traditional methods and confirm consistency for spin-orbit and spin-spin quantities through next-to-leading order in both approaches.

Finally, we present for the first time the second post-Newtonian corrections to the radiation-reaction equations of motion from the effective field theory approach. Matching between the near-field and far-field zones demonstrates the internal consistency of our results through 4.5 post-Newtonian order for nonspinning objects. Combined with the spin-dependent corrections, these results constitute important progress towards producing theoretical templates for generic orbits entirely within the effective field theory program at a precision needed for current and future gravitational wave detectors.


Share

Citation/Export:
Social Networking:
Share |

Details

Item Type: University of Pittsburgh ETD
Status: Unpublished
Creators/Authors:
CreatorsEmailPitt UsernameORCID
Pardo, Brianbap100@pitt.edubap1000000-0002-4443-8392
ETD Committee:
TitleMemberEmail AddressPitt UsernameORCID
Committee ChairLeibovich, Adamakl2@pitt.edu
Committee MemberBoudreau, Josephboudreau@pitt.edu
Committee MemberBoyanovsky, Danielboyan@pitt.edu
Committee MemberRothstein, Iraizr@andrew.cmu.edu
Committee MemberZentner, Andrewzentner@pitt.edu
Date: 11 May 2023
Date Type: Publication
Defense Date: 24 March 2023
Approval Date: 11 May 2023
Submission Date: 3 April 2023
Access Restriction: No restriction; Release the ETD for access worldwide immediately.
Number of Pages: 144
Institution: University of Pittsburgh
Schools and Programs: Dietrich School of Arts and Sciences > Physics
Degree: PhD - Doctor of Philosophy
Thesis Type: Doctoral Dissertation
Refereed: Yes
Uncontrolled Keywords: Gravitational waves, effective field theory of gravity, nonrelativistic general relativity, compact object binaries.
References: [1] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116 no. 6, (2016) 061102, arXiv:1602.03837 [gr-qc]. [2] A. Buonanno and B. S. Sathyaprakash, “Sources of Gravitational Waves: Theory and Observations,” arXiv:1410.7832 [gr-qc]. [3] LIGO Scientific, Virgo Collaboration, R. Abbott et al., “Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog,” Phys. Rev. D 103 no. 12, (2021) 122002, arXiv:2010.14529 [gr-qc]. [4] LIGO Scientific, Virgo Collaboration, B. P. Abbott et al., “GW170817: Measurements of neutron star radii and equation of state,” Phys. Rev. Lett. 121 no. 16, (2018) 161101, arXiv:1805.11581 [gr-qc]. [5] LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE, MASTER Collaboration, B. P. Abbott et al., “A gravitational-wave standard siren measurement of the Hubble constant,” Nature 551 no. 7678, (2017) 85-88, arXiv:1710.05835 [astro-ph.CO]. [6] P. Ajith et al., “A Template bank for gravitational waveforms from coalescing binary black holes. I. Non-spinning binaries,” Phys. Rev. D 77 (2008) 104017, arXiv:0710.2335 [gr-qc]. [Erratum: Phys.Rev.D 79, 129901 (2009)]. [7] L. Baiotti and L. Rezzolla, “Binary neutron star mergers: a review of Einstein's richest laboratory,” Rept. Prog. Phys. 80 no. 9, (2017) 096901, arXiv:1607.03540 [gr-qc]. [8] L. Blanchet, “Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries,” Living Rev. Rel. 17 (2014) 2, arXiv:1310.1528 [gr-qc]. [9] K. G. Arun, A. Buonanno, G. Faye, and E. Ochsner, “Higher-order spin effects in the amplitude and phase of gravitational waveforms emitted by inspiraling compact binaries: Ready-to-use gravitational waveforms,” Phys. Rev. D 79 (2009) 104023, arXiv:0810.5336 [gr-qc]. [Erratum: Phys.Rev.D 84, 049901 (2011)]. [10] C. M. Will and A. G. Wiseman, “Gravitational radiation from compact binary systems: Gravitational wave forms and energy loss to second postNewtonian order,” Phys. Rev. D 54 (1996) 4813-4848, arXiv:gr-qc/9608012. [11] Q. Henry, S. Marsat, and M. Khalil, “Spin contributions to the gravitational-waveform modes for spin-aligned binaries at the 3.5PN order,” Phys. Rev. D 106 no. 12, (2022) 124018, arXiv:2209.00374 [gr-qc]. [12] L. Blanchet, T. Damour, and G. Esposito-Farese, “Dimensional regularization of the third postNewtonian dynamics of point particles in harmonic coordinates,” Phys. Rev. D 69 (2004) 124007, arXiv:gr-qc/0311052. [13] T. Damour, P. Jaranowski, and G. Sch¨fer, “Nonlocal-in-time action for the fourth a post-Newtonian conservative dynamics of two-body systems,” Phys. Rev. D 89 no. 6, (2014) 064058, arXiv:1401.4548 [gr-qc]. [14] P. Jaranowski and G. Sch¨fer, “Derivation of local-in-time fourth post-Newtonian a ADM Hamiltonian for spinless compact binaries,” Phys. Rev. D 92 no. 12, (2015) 124043, arXiv:1508.01016 [gr-qc]. [15] L. Bernard, L. Blanchet, A. Boh´, G. Faye, and S. Marsat, “Fokker action of e nonspinning compact binaries at the fourth post-Newtonian approximation,” Phys. Rev. D 93 no. 8, (2016) 084037, arXiv:1512.02876 [gr-qc]. [16] L. Bernard, L. Blanchet, A. Boh´, G. Faye, and S. Marsat, “Energy and periastron e advance of compact binaries on circular orbits at the fourth post-Newtonian order,” Phys. Rev. D 95 no. 4, (2017) 044026, arXiv:1610.07934 [gr-qc]. [17] T. Marchand, L. Bernard, L. Blanchet, and G. Faye, “Ambiguity-Free Completion of the Equations of Motion of Compact Binary Systems at the Fourth Post-Newtonian Order,” Phys. Rev. D 97 no. 4, (2018) 044023, arXiv:1707.09289 [gr-qc]. [18] S. Foffa and R. Sturani, “Conservative dynamics of binary systems to fourth Post-Newtonian order in the EFT approach I: Regularized Lagrangian,” Phys. Rev. D 100 no. 2, (2019) 024047, arXiv:1903.05113 [gr-qc]. [19] S. Foffa, R. A. Porto, I. Rothstein, and R. Sturani, “Conservative dynamics of binary systems to fourth Post-Newtonian order in the EFT approach II: Renormalized Lagrangian,” Phys. Rev. D 100 no. 2, (2019) 024048, arXiv:1903.05118 [gr-qc]. [20] S. Foffa, P. Mastrolia, R. Sturani, C. Sturm, and W. J. Torres Bobadilla, “Static two-body potential at fifth post-Newtonian order,” Phys. Rev. Lett. 122 no. 24, (2019) 241605, arXiv:1902.10571 [gr-qc]. [21] J. Bl¨mlein, A. Maier, and P. Marquard, “Five-Loop Static Contribution to the u Gravitational Interaction Potential of Two Point Masses,” Phys. Lett. B 800 (2020) 135100, arXiv:1902.11180 [gr-qc]. [22] J. Bl¨mlein, A. Maier, P. Marquard, and G. Sch¨fer, “The fifth-order u a post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach: potential contributions,” Nucl. Phys. B 965 (2021) 115352, arXiv:2010.13672 [gr-qc]. [23] J. Bl¨mlein, A. Maier, P. Marquard, and G. Sch¨fer, “Testing binary dynamics in u a gravity at the sixth post-Newtonian level,” Phys. Lett. B 807 (2020) 135496, arXiv:2003.07145 [gr-qc]. [24] J. Bl¨mlein, A. Maier, P. Marquard, and G. Sch¨fer, “The 6th post-Newtonian u a potential terms at O(GN ),” Phys. Lett. B 816 (2021) 136260, arXiv:2101.08630 [gr-qc]. [25] D. Bini, T. Damour, and A. Geralico, “Sixth post-Newtonian local-in-time dynamics of binary systems,” Phys. Rev. D 102 no. 2, (2020) 024061, arXiv:2004.05407 [gr-qc]. [26] D. Bini, T. Damour, and A. Geralico, “Sixth post-Newtonian nonlocal-in-time dynamics of binary systems,” Phys. Rev. D 102 no. 8, (2020) 084047, arXiv:2007.11239 [gr-qc]. [27] L. Blanchet, S. Foffa, F. Larrouturou, and R. Sturani, “Logarithmic tail contributions to the energy function of circular compact binaries,” Phys. Rev. D 101 no. 8, (2020) 084045, arXiv:1912.12359 [gr-qc]. [28] L. Blanchet, T. Damour, G. Esposito-Farese, and B. R. Iyer, “Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order,” Phys. Rev. Lett. 93 (2004) 091101, arXiv:gr-qc/0406012. [29] T. Marchand, Q. Henry, F. Larrouturou, S. Marsat, G. Faye, and L. Blanchet, “The mass quadrupole moment of compact binary systems at the fourth post-Newtonian order,” Class. Quant. Grav. 37 no. 21, (2020) 215006, arXiv:2003.13672 [gr-qc]. [30] G. Faye, L. Blanchet, and A. Buonanno, “Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion,” Phys. Rev. D 74 (2006) 104033, arXiv:gr-qc/0605139. [31] A. Antonelli, C. Kavanagh, M. Khalil, J. Steinhoff, and J. Vines, “Gravitational spin-orbit coupling through third-subleading post-Newtonian order: from first-order self-force to arbitrary mass ratios,” Phys. Rev. Lett. 125 no. 1, (2020) 011103, arXiv:2003.11391 [gr-qc]. [32] A. Antonelli, C. Kavanagh, M. Khalil, J. Steinhoff, and J. Vines, “Gravitational spin-orbit and aligned spin1 -spin2 couplings through third-subleading post-Newtonian orders,” Phys. Rev. D 102 (2020) 124024, arXiv:2010.02018 [gr-qc]. [33] A. Bohe, S. Marsat, G. Faye, and L. Blanchet, “Next-to-next-to-leading order spin-orbit effects in the near-zone metric and precession equations of compact binaries,” Class. Quant. Grav. 30 (2013) 075017, arXiv:1212.5520 [gr-qc]. [34] S. Marsat, “Cubic order spin effects in the dynamics and gravitational wave energy flux of compact object binaries,” Class. Quant. Grav. 32 no. 8, (2015) 085008, arXiv:1411.4118 [gr-qc]. [35] S. Marsat, A. Bohe, G. Faye, and L. Blanchet, “Next-to-next-to-leading order spin-orbit effects in the equations of motion of compact binary systems,” Class. Quant. Grav. 30 (2013) 055007, arXiv:1210.4143 [gr-qc]. [36] L. Blanchet, A. Buonanno, and G. Faye, “Higher-order spin effects in the dynamics of compact binaries. II. Radiation field,” Phys. Rev. D 74 (2006) 104034, arXiv:gr-qc/0605140. [Erratum: Phys.Rev.D 75, 049903 (2007), Erratum: Phys.Rev.D 81, 089901 (2010)]. [37] A. Boh´, S. Marsat, and L. Blanchet, “Next-to-next-to-leading order spin-orbit e effects in the gravitational wave flux and orbital phasing of compact binaries,” Class. Quant. Grav. 30 (2013) 135009, arXiv:1303.7412 [gr-qc]. [38] R. A. Porto, A. Ross, and I. Z. Rothstein, “Spin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian order,” JCAP 03 (2011) 009, arXiv:1007.1312 [gr-qc]. [39] A. Boh´, G. Faye, S. Marsat, and E. K. Porter, “Quadratic-in-spin effects in the e orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order,” Class. Quant. Grav. 32 no. 19, (2015) 195010, arXiv:1501.01529 [gr-qc]. [40] W. D. Goldberger and I. Z. Rothstein, “An Effective field theory of gravity for extended objects,” Phys. Rev. D 73 (2006) 104029, arXiv:hep-th/0409156. [41] H. Elvang and Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity. Cambridge University Press, 4, 2015. [42] Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, and R. Roiban, “The Duality Between Color and Kinematics and its Applications,” arXiv:1909.01358 [hep-th]. [43] G. K¨lin and R. A. Porto, “From boundary data to bound states. Part II. Scattering a angle to dynamical invariants (with twist),” JHEP 02 (2020) 120, arXiv:1911.09130 [hep-th]. [44] G. K¨lin and R. A. Porto, “From Boundary Data to Bound States,” JHEP 01 a (2020) 072, arXiv:1910.03008 [hep-th]. [45] G. K¨lin and R. A. Porto, “Post-Minkowskian Effective Field Theory for a Conservative Binary Dynamics,” JHEP 11 (2020) 106, arXiv:2006.01184 [hep-th]. [46] C. Cheung, I. Z. Rothstein, and M. P. Solon, “From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion,” Phys. Rev. Lett. 121 no. 25, (2018) 251101, arXiv:1808.02489 [hep-th]. [47] D. A. Kosower, B. Maybee, and D. O'Connell, “Amplitudes, Observables, and Classical Scattering,” JHEP 02 (2019) 137, arXiv:1811.10950 [hep-th]. [48] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon, and M. Zeng, “Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order,” Phys. Rev. Lett. 122 no. 20, (2019) 201603, arXiv:1901.04424 [hep-th]. [49] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon, and M. Zeng, “Black Hole Binary Dynamics from the Double Copy and Effective Theory,” JHEP 10 (2019) 206, arXiv:1908.01493 [hep-th]. [50] C. Cheung and M. P. Solon, “Classical gravitational scattering at O(G3 ) from Feynman diagrams,” JHEP 06 (2020) 144, arXiv:2003.08351 [hep-th]. [51] C. Cheung and M. P. Solon, “Tidal Effects in the Post-Minkowskian Expansion,” Phys. Rev. Lett. 125 no. 19, (2020) 191601, arXiv:2006.06665 [hep-th]. [52] G. K¨lin, Z. Liu, and R. A. Porto, “Conservative Tidal Effects in Compact Binary a Systems to Next-to-Leading Post-Minkowskian Order,” Phys. Rev. D 102 (2020) 124025, arXiv:2008.06047 [hep-th]. [53] Z. Bern, J. Parra-Martinez, R. Roiban, E. Sawyer, and C.-H. Shen, “Leading Nonlinear Tidal Effects and Scattering Amplitudes,” JHEP 05 (2021) 188, arXiv:2010.08559 [hep-th]. [54] C. Cheung, N. Shah, and M. P. Solon, “Mining the Geodesic Equation for Scattering Data,” Phys. Rev. D 103 no. 2, (2021) 024030, arXiv:2010.08568 [hep-th]. [55] Z. Bern, J. Parra-Martinez, R. Roiban, M. S. Ruf, C.-H. Shen, M. P. Solon, and M. Zeng, “Scattering Amplitudes and Conservative Binary Dynamics at O(G4 ),” Phys. Rev. Lett. 126 no. 17, (2021) 171601, arXiv:2101.07254 [hep-th]. [56] J. Vines, “Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings,” Class. Quant. Grav. 35 no. 8, (2018) 084002, arXiv:1709.06016 [gr-qc]. [57] J. Vines, J. Steinhoff, and A. Buonanno, “Spinning-black-hole scattering and the test-black-hole limit at second post-Minkowskian order,” Phys. Rev. D 99 no. 6, (2019) 064054, arXiv:1812.00956 [gr-qc]. [58] B. Maybee, D. O'Connell, and J. Vines, “Observables and amplitudes for spinning particles and black holes,” JHEP 12 (2019) 156, arXiv:1906.09260 [hep-th]. [59] A. Guevara, A. Ochirov, and J. Vines, “Scattering of Spinning Black Holes from Exponentiated Soft Factors,” JHEP 09 (2019) 056, arXiv:1812.06895 [hep-th]. [60] A. Guevara, A. Ochirov, and J. Vines, “Black-hole scattering with general spin directions from minimal-coupling amplitudes,” Phys. Rev. D 100 no. 10, (2019) 104024, arXiv:1906.10071 [hep-th]. [61] R. Aoude, K. Haddad, and A. Helset, “Tidal effects for spinning particles,” JHEP 03 (2021) 097, arXiv:2012.05256 [hep-th]. [62] M.-Z. Chung, Y.-t. Huang, J.-W. Kim, and S. Lee, “Complete Hamiltonian for spinning binary systems at first post-Minkowskian order,” JHEP 05 (2020) 105, arXiv:2003.06600 [hep-th]. [63] Z. Bern, A. Luna, R. Roiban, C.-H. Shen, and M. Zeng, “Spinning black hole binary dynamics, scattering amplitudes, and effective field theory,” Phys. Rev. D 104 no. 6, (2021) 065014, arXiv:2005.03071 [hep-th]. [64] D. Kosmopoulos and A. Luna, “Quadratic-in-spin Hamiltonian at O(G2 ) from scattering amplitudes,” JHEP 07 (2021) 037, arXiv:2102.10137 [hep-th]. [65] Z. Liu, R. A. Porto, and Z. Yang, “Spin Effects in the Effective Field Theory Approach to Post-Minkowskian Conservative Dynamics,” JHEP 06 (2021) 012, arXiv:2102.10059 [hep-th]. [66] E. Herrmann, J. Parra-Martinez, M. S. Ruf, and M. Zeng, “Gravitational Bremsstrahlung from Reverse Unitarity,” Phys. Rev. Lett. 126 no. 20, (2021) 201602, arXiv:2101.07255 [hep-th]. [67] P. Di Vecchia, C. Heissenberg, R. Russo, and G. Veneziano, “Radiation Reaction from Soft Theorems,” Phys. Lett. B 818 (2021) 136379, arXiv:2101.05772 [hep-th]. [68] G. Mogull, J. Plefka, and J. Steinhoff, “Classical black hole scattering from a worldline quantum field theory,” JHEP 02 (2021) 048, arXiv:2010.02865 [hep-th]. [69] G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff, “Classical Gravitational Bremsstrahlung from a Worldline Quantum Field Theory,” Phys. Rev. Lett. 126 no. 20, (2021) 201103, arXiv:2101.12688 [gr-qc]. [70] S. Mougiakakos, M. M. Riva, and F. Vernizzi, “Gravitational Bremsstrahlung in the post-Minkowskian effective field theory,” Phys. Rev. D 104 no. 2, (2021) 024041, arXiv:2102.08339 [gr-qc]. [71] J. B. Gilmore and A. Ross, “Effective field theory calculation of second post-Newtonian binary dynamics,” Phys. Rev. D 78 (2008) 124021, arXiv:0810.1328 [gr-qc]. [72] S. Foffa and R. Sturani, “Effective field theory calculation of conservative binary dynamics at third post-Newtonian order,” Phys. Rev. D 84 (2011) 044031, arXiv:1104.1122 [gr-qc]. [73] S. Foffa and R. Sturani, “Dynamics of the gravitational two-body problem at fourth post-Newtonian order and at quadratic order in the Newton constant,” Phys. Rev. D 87 no. 6, (2013) 064011, arXiv:1206.7087 [gr-qc]. [74] S. Foffa, P. Mastrolia, R. Sturani, and C. Sturm, “Effective field theory approach to the gravitational two-body dynamics, at fourth post-Newtonian order and quintic in the Newton constant,” Phys. Rev. D 95 no. 10, (2017) 104009, arXiv:1612.00482 [gr-qc]. [75] R. A. Porto and I. Z. Rothstein, “Spin(1)Spin(2) Effects in the Motion of Inspiralling Compact Binaries at Third Order in the Post-Newtonian Expansion,” Phys. Rev. D 78 (2008) 044012, arXiv:0802.0720 [gr-qc]. [Erratum: Phys.Rev.D 81, 029904 (2010)]. [76] R. A. Porto and I. Z. Rothstein, “Apparent ambiguities in the post-Newtonian expansion for binary systems,” Phys. Rev. D 96 no. 2, (2017) 024062, arXiv:1703.06433 [gr-qc]. [77] L. Bernard, L. Blanchet, G. Faye, and T. Marchand, “Center-of-Mass Equations of Motion and Conserved Integrals of Compact Binary Systems at the Fourth Post-Newtonian Order,” Phys. Rev. D 97 no. 4, (2018) 044037, arXiv:1711.00283 [gr-qc]. [78] A. K. Leibovich, N. T. Maia, I. Z. Rothstein, and Z. Yang, “Second post-Newtonian order radiative dynamics of inspiralling compact binaries in the Effective Field Theory approach,” Phys. Rev. D 101 no. 8, (2020) 084058, arXiv:1912.12546 [gr-qc]. [79] D. Bini, T. Damour, and A. Geralico, “Binary dynamics at the fifth and fifth-and-a-half post-Newtonian orders,” Phys. Rev. D 102 no. 2, (2020) 024062, arXiv:2003.11891 [gr-qc]. [80] R. A. Porto, “Post-Newtonian corrections to the motion of spinning bodies in NRGR,” Phys. Rev. D 73 (2006) 104031, arXiv:gr-qc/0511061. [81] R. A. Porto and I. Z. Rothstein, “The Hyperfine Einstein-Infeld-Hoffmann potential,” Phys. Rev. Lett. 97 (2006) 021101, arXiv:gr-qc/0604099. [82] R. A. Porto, “New results at 3PN via an effective field theory of gravity,” in 11th Marcel Grossmann Meeting on General Relativity, pp. 2493-2496. 1, 2007. arXiv:gr-qc/0701106. [83] J. Steinhoff, S. Hergt, and G. Schaefer, “Spin-squared Hamiltonian of next-to-leading order gravitational interaction,” Phys. Rev. D 78 (2008) 101503, arXiv:0809.2200 [gr-qc]. [84] R. A. Porto and I. Z. Rothstein, “Next to Leading Order Spin(1)Spin(1) Effects in the Motion of Inspiralling Compact Binaries,” Phys. Rev. D 78 (2008) 044013, arXiv:0804.0260 [gr-qc]. [Erratum: Phys.Rev.D 81, 029905 (2010)]. [85] R. A. Porto, “Next to leading order spin-orbit effects in the motion of inspiralling compact binaries,” Class. Quant. Grav. 27 (2010) 205001, arXiv:1005.5730 [gr-qc]. [86] M. Levi, “Next to Leading Order gravitational Spin-Orbit coupling in an Effective Field Theory approach,” Phys. Rev. D 82 (2010) 104004, arXiv:1006.4139 [gr-qc]. [87] M. Levi, “Next to Leading Order gravitational Spin1-Spin2 coupling with Kaluza-Klein reduction,” Phys. Rev. D 82 (2010) 064029, arXiv:0802.1508 [gr-qc]. [88] M. Levi and J. Steinhoff, “Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme,” JCAP 01 (2016) 008, arXiv:1506.05794 [gr-qc]. [89] M. Levi and J. Steinhoff, “Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme,” JCAP 01 (2016) 011, arXiv:1506.05056 [gr-qc]. [90] M. Levi, A. J. Mcleod, and M. Von Hippel, “N3 LO gravitational spin-orbit coupling at order G4 ,” JHEP 07 (2021) 115, arXiv:2003.02827 [hep-th]. [91] M. Levi, A. J. Mcleod, and M. Von Hippel, “N3 LO gravitational quadratic-in-spin interactions at G4 ,” JHEP 07 (2021) 116, arXiv:2003.07890 [hep-th]. [92] M. Levi and J. Steinhoff, “Complete conservative dynamics for inspiralling compact binaries with spins at the fourth post-Newtonian order,” JCAP 09 (2021) 029, arXiv:1607.04252 [gr-qc]. [93] M. Levi, “Binary dynamics from spin1-spin2 coupling at fourth post-Newtonian order,” Phys. Rev. D 85 (2012) 064043, arXiv:1107.4322 [gr-qc]. [94] W. D. Goldberger and I. Z. Rothstein, “Dissipative effects in the worldline approach to black hole dynamics,” Phys. Rev. D 73 (2006) 104030, arXiv:hep-th/0511133. [95] J. Steinhoff, S. Hergt, and G. Schaefer, “On the next-to-leading order gravitational spin(1)-spin(2) dynamics,” Phys. Rev. D 77 (2008) 081501, arXiv:0712.1716 [gr-qc]. [96] C. R. Galley and M. Tiglio, “Radiation reaction and gravitational waves in the effective field theory approach,” Phys. Rev. D 79 (2009) 124027, arXiv:0903.1122 [gr-qc]. [97] W. D. Goldberger and A. Ross, “Gravitational radiative corrections from effective field theory,” Phys. Rev. D 81 (2010) 124015, arXiv:0912.4254 [gr-qc]. [98] C. R. Galley and A. K. Leibovich, “Radiation reaction at 3.5 post-Newtonian order in effective field theory,” Phys. Rev. D 86 (2012) 044029, arXiv:1205.3842 [gr-qc]. [99] A. Ross, “Multipole expansion at the level of the action,” Phys. Rev. D 85 (2012) 125033, arXiv:1202.4750 [gr-qc]. [100] W. D. Goldberger and A. K. Ridgway, “Radiation and the classical double copy for color charges,” Phys. Rev. D 95 no. 12, (2017) 125010, arXiv:1611.03493 [hep-th]. [101] C. R. Galley, A. K. Leibovich, R. A. Porto, and A. Ross, “Tail effect in gravitational radiation reaction: Time nonlocality and renormalization group evolution,” Phys. Rev. D 93 (2016) 124010, arXiv:1511.07379 [gr-qc]. [102] W. D. Goldberger, J. Li, and I. Z. Rothstein, “Non-conservative effects on spinning black holes from world-line effective field theory,” JHEP 06 (2021) 053, arXiv:2012.14869 [hep-th]. [103] R. A. Porto, A. Ross, and I. Z. Rothstein, “Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 Post-Newtonian order,” JCAP 09 (2012) 028, arXiv:1203.2962 [gr-qc]. [104] G. Cho, R. A. Porto, and Z. Yang, “Gravitational radiation from inspiralling compact objects: Spin effects to the fourth post-Newtonian order,” Phys. Rev. D 106 no. 10, (2022) L101501, arXiv:2201.05138 [gr-qc]. [105] N. T. Maia, C. R. Galley, A. K. Leibovich, and R. A. Porto, “Radiation reaction for spinning bodies in effective field theory I: Spin-orbit effects,” Phys. Rev. D 96 no. 8, (2017) 084064, arXiv:1705.07934 [gr-qc]. [106] N. T. Maia, C. R. Galley, A. K. Leibovich, and R. A. Porto, “Radiation reaction for spinning bodies in effective field theory II: Spin-spin effects,” Phys. Rev. D 96 no. 8, (2017) 084065, arXiv:1705.07938 [gr-qc]. [107] B. A. Pardo and N. T. Maia, “Next-to-leading order spin-orbit effects in the equations of motion, energy loss and phase evolution of binaries of compact bodies in the effective field theory approach,” Phys. Rev. D 102 (2020) 124020, arXiv:2009.05628 [gr-qc]. [108] G. Cho, B. Pardo, and R. A. Porto, “Gravitational radiation from inspiralling compact objects: Spin-spin effects completed at the next-to-leading post-Newtonian order,” Phys. Rev. D 104 no. 2, (2021) 024037, arXiv:2103.14612 [gr-qc]. [109] A. K. Leibovich, B. A. Pardo, and Z. Yang, “Radiation reaction for non-spinning bodies at 4.5PN in the effective field theory approach,” arXiv:2302.11016 [gr-qc]. [110] A. Gopakumar, B. R. Iyer, and S. Iyer, “Second postNewtonian gravitational radiation reaction for two-body systems: Nonspinning bodies,” Phys. Rev. D 55 (1997) 6030-6053, arXiv:gr-qc/9703075. [Erratum: Phys.Rev.D 57, 6562 (1998)]. [111] J. M. Mart´ın-Garc´ “xAct: efficient tensor computer algebra for the wolfram ıa, language.” https://www.xAct.es. [112] R. A. Porto, “The effective field theorist's approach to gravitational dynamics,” Phys. Rept. 633 (2016) 1-104, arXiv:1601.04914 [hep-th]. [113] M. Levi, “Effective Field Theories of Post-Newtonian Gravity: A comprehensive review,” Rept. Prog. Phys. 83 no. 7, (2020) 075901, arXiv:1807.01699 [hep-th]. [114] W. D. Goldberger, “Les Houches lectures on effective field theories and gravitational radiation,” in Les Houches Summer School - Session 86: Particle Physics and Cosmology: The Fabric of Spacetime. 1, 2007. arXiv:hep-ph/0701129. [115] B. Grinstein and I. Z. Rothstein, “Effective field theory and matching in nonrelativistic gauge theories,” Phys. Rev. D 57 (1998) 78-82, arXiv:hep-ph/9703298. [116] B. M. Barker and R. F. O'Connell, “Nongeodesic motion in general relativity,” Gen. Rel. and Grav. 5 (Oct., 1974) 539-554. [117] L. E. Kidder, “Coalescing binary systems of compact objects to postNewtonian 5/2 order. 5. Spin effects,” Phys. Rev. D 52 (1995) 821-847, arXiv:gr-qc/9506022. [118] B. J. Owen, H. Tagoshi, and A. Ohashi, “Nonprecessional spin orbit effects on gravitational waves from inspiraling compact binaries to second postNewtonian order,” Phys. Rev. D 57 (1998) 6168-6175, arXiv:gr-qc/9710134. [119] C. M. Will, “Post-Newtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. III. Radiation reaction for binary systems with spinning bodies,” Phys. Rev. D 71 (2005) 084027, arXiv:gr-qc/0502039. [120] C. W. Lincoln and C. M. Will, “Coalescing Binary Systems of Compact Objects to (Post)5/2 Newtonian Order: Late Time Evolution and Gravitational Radiation Emission,” Phys. Rev. D 42 (1990) 1123-1143. [121] C. R. Galley and I. Z. Rothstein, “Deriving analytic solutions for compact binary inspirals without recourse to adiabatic approximations,” Phys. Rev. D 95 no. 10, (2017) 104054, arXiv:1609.08268 [gr-qc]. [122] Z. Yang and A. K. Leibovich, “Analytic Solutions to Compact Binary Inspirals With Leading Order Spin-Orbit Contribution Using The Dynamical Renormalization Group,” Phys. Rev. D 100 no. 8, (2019) 084021, arXiv:1908.05688 [gr-qc]. [123] E. Racine, A. Buonanno, and L. E. Kidder, “Recoil velocity at 2PN order for spinning black hole binaries,” Phys. Rev. D 80 (2009) 044010, arXiv:0812.4413 [gr-qc]. [124] K. S. Thorne, “Multipole Expansions of Gravitational Radiation,” Rev. Mod. Phys. 52 (1980) 299-339. [125] M. J. Fitchett, “The influence of gravitational wave momentum losses on the centre of mass motion of a newtonian binary system,” MNRAS 203 no. 4, (Aug., 1983) 1049-1062. [126] D. Bini and T. Damour, “Analytical determination of the two-body gravitational interaction potential at the fourth post-Newtonian approximation,” Phys. Rev. D 87 no. 12, (2013) 121501, arXiv:1305.4884 [gr-qc]. [127] K. S. Thorne, “Nonradial Pulsation of General-Relativistic Stellar Models. IV. The Weakfield Limit,” Astrophys. J. 158 (1969) 997. [128] W. L. Burke, “Gravitational radiation damping of slowly moving systems calculated using matched asymptotic expansions,” J. Math. Phys. 12 (1971) 401-418. [129] B. R. Iyer and C. M. Will, “PostNewtonian gravitational radiation reaction for two-body systems,” Phys. Rev. Lett. 70 (1993) 113-116. [130] L. Blanchet, “Time asymmetric structure of gravitational radiation,” Phys. Rev. D 47 (1993) 4392-4420. [131] B. R. Iyer and C. M. Will, “PostNewtonian gravitational radiation reaction for two-body systems: Nonspinning bodies,” Phys. Rev. D 52 (1995) 6882-6893. [132] L. Blanchet, “Energy losses by gravitational radiation in inspiraling compact binaries to five halves postNewtonian order,” Phys. Rev. D 54 (1996) 1417-1438, arXiv:gr-qc/9603048. [Erratum: Phys.Rev.D 71, 129904 (2005)]. [133] S. Nissanke and L. Blanchet, “Gravitational radiation reaction in the equations of motion of compact binaries to 3.5 post-Newtonian order,” Class. Quant. Grav. 22 (2005) 1007-1032, arXiv:gr-qc/0412018. [134] C. Konigsdorffer, G. Faye, and G. Schaefer, “The Binary black hole dynamics at the third-and-a-half postNewtonian order in the ADM formalism,” Phys. Rev. D 68 (2003) 044004, arXiv:gr-qc/0305048. [135] P. Jaranowski and G. Schaefer, “Radiative 3.5 postNewtonian ADM Hamiltonian for many body point-mass systems,” Phys. Rev. D 55 (1997) 4712-4722. [136] M. E. Pati and C. M. Will, “PostNewtonian gravitational radiation and equations of motion via direct integration of the relaxed Einstein equations. 2. Two-body equations of motion to second postNewtonian order, and radiation reaction to 3.5 postNewtonian order,” Phys. Rev. D 65 (2002) 104008, arXiv:gr-qc/0201001. [137] Y. Itoh, “Third-and-a-half order post-Newtonian equations of motion for relativistic compact binaries using the strong field point particle limit,” Phys. Rev. D 80 (2009) 124003, arXiv:0911.4232 [gr-qc]. [138] C. R. Galley, “Classical Mechanics of Nonconservative Systems,” Phys. Rev. Lett. 110 no. 17, (2013) 174301, arXiv:1210.2745 [gr-qc]. [139] C. R. Galley, D. Tsang, and L. C. Stein, “The principle of stationary nonconservative action for classical mechanics and field theories,” arXiv:1412.3082 [math-ph]. [140] C. R. Galley, A. K. Leibovich, and I. Z. Rothstein, “Finite size corrections to the radiation reaction force in classical electrodynamics,” Phys. Rev. Lett. 105 (2010) 094802, arXiv:1005.2617 [gr-qc]. [141] L. Blanchet, G. Faye, B. R. Iyer, and B. Joguet, “Gravitational wave inspiral of compact binary systems to 7/2 postNewtonian order,” Phys. Rev. D 65 (2002) 061501, arXiv:gr-qc/0105099. [Erratum: Phys.Rev.D 71, 129902 (2005)]. [142] G. Schott, “VI. On the motion of the Lorentz electron,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 29 no. 169, (Jan., 1915) 49-62, https://doi.org/10.1080/14786440108635280. [143] L. Blanchet, “Gravitational radiation reaction and balance equations to postNewtonian order,” Phys. Rev. D 55 (1997) 714-732, arXiv:gr-qc/9609049. [144] L. Blanchet and G. Faye, “Flux-balance equations for linear momentum and center-of-mass position of self-gravitating post-Newtonian systems,” Class. Quant. Grav. 36 no. 8, (2019) 085003, arXiv:1811.08966 [gr-qc]. [145] G. Cho and H. M. Lee, “Analytic Keplerian-type parametrization for general spinning compact binaries with leading order spin-orbit interactions,” Phys. Rev. D 100 no. 4, (2019) 044046, arXiv:1908.02927 [gr-qc]. [146] K. Chatziioannou, A. Klein, N. Yunes, and N. Cornish, “Constructing Gravitational Waves from Generic Spin-Precessing Compact Binary Inspirals,” Phys. Rev. D 95 no. 10, (2017) 104004, arXiv:1703.03967 [gr-qc]. [147] P. Csizmadia, G. Debreczeni, I. Racz, and M. Vasuth, “Gravitational waves from spinning eccentric binaries,” Class. Quant. Grav. 29 (2012) 245002, arXiv:1207.0001 [gr-qc].
Date Deposited: 11 May 2023 12:55
Last Modified: 11 May 2023 12:55
URI: http://d-scholarship.pitt.edu/id/eprint/44392

Metrics

Monthly Views for the past 3 years

Plum Analytics


Actions (login required)

View Item View Item